Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects

Identifieur interne : 00A443 ( Main/Repository ); précédent : 00A442; suivant : 00A444

Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects

Auteurs : RBID : Pascal:04-0242329

Descripteurs français

English descriptors

Abstract

Integration of ferroelectric materials into nanoscale field-effect transistors offers enormous promise for superior transistor performance and also intriguing memory effects. In this study, we have incorporated lead zirconate titanate (PZT) into In2O3 nanowire transistors to replace the commonly used SiO2 as the gate dielectric. These transistors exhibited substantially enhanced performance as a result of the high dielectric constant of PZT, as revealed by a 30-fold increase in the transconductance and a 10-fold reduction in the subthreshold swing when compared to similar SiO2-gated devices. Furthermore, memory effects were observed with our devices, as characterized by a counter-clockwise loop in current-versus-gate-bias curves that can be attributed to the switchable remnant polarization of PZT. Our method can be easily generalized to other nanomaterials systems and may prove to be a viable way to obtain nanoscale memories. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0242329

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects</title>
<author>
<name sortKey="Lei, Bo" uniqKey="Lei B">Bo Lei</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Li, Chao" uniqKey="Li C">Chao Li</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Daihua" uniqKey="Zhang D">Daihua Zhang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Q F" uniqKey="Zhou Q">Q. F. Zhou</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shung, K K" uniqKey="Shung K">K. K. Shung</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Chongwu" uniqKey="Zhou C">Chongwu Zhou</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0242329</idno>
<date when="2004-05-31">2004-05-31</date>
<idno type="stanalyst">PASCAL 04-0242329 AIP</idno>
<idno type="RBID">Pascal:04-0242329</idno>
<idno type="wicri:Area/Main/Corpus">00B731</idno>
<idno type="wicri:Area/Main/Repository">00A443</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Dielectric materials</term>
<term>Experimental study</term>
<term>Ferroelectric materials</term>
<term>Field effect transistors</term>
<term>Indium compounds</term>
<term>Lead compounds</term>
<term>Nanowires</term>
<term>Oxygen compounds</term>
<term>Titanium compounds</term>
<term>Zirconium compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8530T</term>
<term>8535</term>
<term>Etude expérimentale</term>
<term>Transistor effet champ</term>
<term>Nanofil</term>
<term>Matériau ferroélectrique</term>
<term>Matériau diélectrique</term>
<term>Plomb composé</term>
<term>Zirconium composé</term>
<term>Titane composé</term>
<term>Indium composé</term>
<term>Oxygène composé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Integration of ferroelectric materials into nanoscale field-effect transistors offers enormous promise for superior transistor performance and also intriguing memory effects. In this study, we have incorporated lead zirconate titanate (PZT) into In
<sub>2</sub>
O
<sub>3</sub>
nanowire transistors to replace the commonly used SiO
<sub>2</sub>
as the gate dielectric. These transistors exhibited substantially enhanced performance as a result of the high dielectric constant of PZT, as revealed by a 30-fold increase in the transconductance and a 10-fold reduction in the subthreshold swing when compared to similar SiO
<sub>2</sub>
-gated devices. Furthermore, memory effects were observed with our devices, as characterized by a counter-clockwise loop in current-versus-gate-bias curves that can be attributed to the switchable remnant polarization of PZT. Our method can be easily generalized to other nanomaterials systems and may prove to be a viable way to obtain nanoscale memories. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEI (Bo)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LI (Chao)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZHANG (Daihua)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHOU (Q. F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SHUNG (K. K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHOU (Chongwu)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of E.E.-Electrophysics, Department of Biomedical Engineering and NIH Transducer Resource Center, University of Southern California, Los Angeles, California 90089</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>4553-4555</s1>
</fA20>
<fA21>
<s1>2004-05-31</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0242329</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Integration of ferroelectric materials into nanoscale field-effect transistors offers enormous promise for superior transistor performance and also intriguing memory effects. In this study, we have incorporated lead zirconate titanate (PZT) into In
<sub>2</sub>
O
<sub>3</sub>
nanowire transistors to replace the commonly used SiO
<sub>2</sub>
as the gate dielectric. These transistors exhibited substantially enhanced performance as a result of the high dielectric constant of PZT, as revealed by a 30-fold increase in the transconductance and a 10-fold reduction in the subthreshold swing when compared to similar SiO
<sub>2</sub>
-gated devices. Furthermore, memory effects were observed with our devices, as characterized by a counter-clockwise loop in current-versus-gate-bias curves that can be attributed to the switchable remnant polarization of PZT. Our method can be easily generalized to other nanomaterials systems and may prove to be a viable way to obtain nanoscale memories. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8530T</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8535</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Transistor effet champ</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Field effect transistors</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanofil</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanowires</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Matériau ferroélectrique</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ferroelectric materials</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Matériau diélectrique</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Dielectric materials</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Plomb composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Lead compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Zirconium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Zirconium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Titane composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Titanium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Oxygène composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Oxygen compounds</s0>
</fC03>
<fN21>
<s1>152</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0421M000109</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A443 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A443 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0242329
   |texte=   Nanowire transistors with ferroelectric gate dielectrics: Enhanced performance and memory effects
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024